

Specification Guide

MX Series

Indoor Modular Blowers

Electric Heat, Hot Water Heat, or No Heat

Contents	Page
Standard Features	2
Physical Data	2
Blower Performance	3
Nomenclature	3
Electrical Data	4
Water Heating Capacity	5
Sample Hydronic Design	6
Maximum Line Lengths	7
Dimensions	8

A

WARNING

To install the MX Series air handler in the horizontal position a (2") clearance must be maintained between the apex of the evaporator coil and the top of the coil's cabinet. Therefore, the ADP multi-position evaporator coils below cannot be used in horizontal applications with the MX Series air handler.

Slab numbers A07, A15, E27, E37, E48, E50, E55, E57, E87, and E88.

ISO 9001:2008

Product improvement is a continuous process at Advanced Distributor Products. Therefore, product specifications are subject to change without notice and without obligation on our part. Please contact your ADP representative or distributor to verify details.

© by Advanced Distributor Products. All rights reserved.

Standard Features All Models

- Easy Installation: "One-Man-Job"
- Cabinet lined with high quality 5/8" foil faced insulation.
- Available from factory as upflow, downflow, and horizontal.
- Only four screws to remove blower panel, making it easier to service.
- Embossed cabinet in heavy gauge galvanized steel to prevent corrosion.
- Factory installed fan time delay postpones blower shutoff 30 seconds in heating mode and 45 seconds in cooling mode.
- Electrical connections can be made on top or right side for 8,12,& 16 size models and top or left side for 20 size models.
- Dynamically balanced 3-speed PSC motor with easy to adjust settings for fine tuning customer comfort.
- Approved for installation in manufactured housing and mobile homes.

Standard Features with Electric Heat

- Slide-out panel with one-point electrical connections.
- Electric heat kits with plug in connections available for field installation.

Standard Features with Hot Water Heat

- Suitable for potable water systems.
- Enhanced grommets secure & tight.
- Easy to replace hot water coil. Remove one screw and slide out.
- Optional factory installed circulating pump fully encased in cabinet.
- Purge valve on hot water coil allows for manual release of any air trapped in coil during installation or servicing.
- Water connections 7/8" ODF (for 3/4" water pipe) on 08 & 12 models and 1 1/8" ODF (for 1" water pipe) on 16 & 20 models.
- Multi-function control board comes standard factory installed and includes the following features:

Features are compatible with both factory and field installed circulating pumps.

- 1. Pump timer- Activates pump for 1 minute every 6 hours eliminating stagnant water in hot water coil.
- 2. 24 VAC isolation valve control-allows for zoning control.
- 3. Auxiliary contacts for water heater or boiler activation.
- 4. Freeze protection- standard factory installed, activates at 40 deg. F and deactivates at 70 deg. F.
- 5. Thermostat connections
- 6. Time delay for blower activation:
 - 60 seconds (tap in OFF position)
 - 130 deg. F Aquastat (tap in ON position)
 - Note: Aquastat tap only included if ordered

Physical Data

-			Unit	Size					
		08	12	16	20				
Nominal CFM		800	1,200	1,600	2,000				
Available Voltage*		120	V, 60 Hz, 1 ph. or 2	.08/240 V, 60 Hz,	1 ph.				
Maximum Elec. Heat Kit Allowed for I	Field Installation (kW)	10 15 20 20							
Transformer Size & Type			40 VA, 0	Class 2					
Blower Wheel (dia." x width")		9 X 6	10 X 8	10 X 8	10 X 10				
Electric Heat Blower Data	Motor H. P.	1/3	1/3	3/4	3/4				
Electric fleat blower bata	F. L. A. @ 240 V	1.8	2.6	4.4	4.3				
	Blower Motor H. P.	1/3	1/2	3/4	3/4				
	Blower F. L. A. @ 120 V	5.3	7.1	7.5	10.5				
Hot Water Heat Blower/Pump Data	Pump Conn. Size		7/8	3"					
	Pump Voltage		120	V					
	Pump Amps		.5	2					
Approximate Weight (lbs)		66	66	71	83				

^{*} Hot water heat only available in 120 V, 60 Hz.

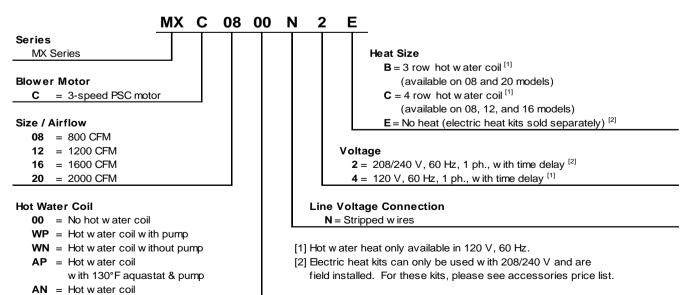
Blower Performance

208/240V Motor

Unit Size	Speed	<i>A</i>	irflow (CFM) vs.	. External Static	Pressure (in W.	C)
Offic Size	Speed	0.1	0.2	0.3	0.4	0.5
	Low	591	601	586	564	513
08	*Med	914	881	832	773	699
	High	1077	1020	947	874	768
	Low	1085	1076	1059	1043	1009
12	*Med	1260	1255	1252	1207	1168
	High	1335	1330	1326	1289	1252
	Low	1512	1487	1444	1399	1315
16	Med	1635	1605	1585	1503	1416
	*High	1732	1703	1635	1555	1471
	Low	1604	1582	1548	1490	1417
20	*Med	2064	1993	1907	1817	1709
	High	2218	2131	2039	1943	1829

120V Motor

Unit Size	Smood	Α	irflow (CFM) vs.	External Static	Pressure (in W.	C)
Unit Size	Speed	0.1	0.2	0.3	0.4	0.5
	Low	749	705	658	614	558
08	*Med	865	815	760	708	646
	High	904	836	801	740	681
	Low	1198	1144	1086	1018	962
12	*Med	1257	1198	1130	1072	1010
	High	1273	1215	1158	1094	1018
	Low	1576	1514	1433	1338	1264
16	Med	1643	1576	1490	1407	1320
	*High	1707	1606	1545	1441	1364
	Low	1759	1691	1652	1580	1512
20	Med	1838	1788	1729	1644	1555
	*High	1928	1867	1810	1729	1637


Speeds marked in **bold with an asterisk*** are the factory speed settings for both heating and cooling.

All data is given while air handler is operating with a dry DX coil and air filter installed.

with 130°F aquastat & without pump

These are nominal values and blower performance can vary higher or lower from these values based on the evaporator coil that is used. Hot water heat airflow performance data includes associated air pressure drop across a 4 row hot water coil for Unit Size 08, 12, & 16; air pressure drop across a 3 row hot water coil for Unit Size 20.

Nomenclature

Approved in state of Massachusetts

Electrical Data

208/240 V, 60 Hz, 1 phase

	Elec. Heat	ing Cap. (1)	Blower Amps	Minimum Circuit	Circuit Breaker		
Unit Size	kW	BTUH	- blower Allips	Ampacity	Amps P	er Stage	
	240 V	240 V	240 V	240 V	1	2	
08 (No Heat)	0	0	1.8	2.3	15	-	
08	5	17,065	1.8	28.3	30	-	
08	7.5	25,598	1.8	41.3	45	-	
08	10	34,130	1.8	54.3	60	-	
12 (No Heat)	0	0	2.6	3.3	15	-	
12	5	17,065	2.6	29.3	30	-	
12	7.5	25,598	2.6	42.3	45	-	
12	10	34,130	2.6	55.3	60	-	
12	15	51,195	2.6	81.4	60	30	
16 (No Heat)	0	0	4.4	5.5	15	-	
16	7.5	25,598	4.4	44.6	45	-	
16	10	34,130	4.4	57.6	60	-	
16	15	51,195	4.4	83.6	60	30	
16	20	68,260	4.4	109.7	60	60	
20 (No Heat)	0	0	4.3	5.4	15	-	
20	7.5	25,598	4.3	44.4	45	-	
20	10	34,130	4.3	57.5	60	-	
20	15	51,195	4.3	83.5	60	30	
20	20	68,260	4.3	109.5	60	60	

kW packages in **bold italics** indicate that these heat packages require and include circuit breakers; circuit breakers are optional for all other models.

⁽¹⁾ For 208 Volts use .751 correction factor for kW & BTUH.

Water Heating Capacity (BTUH)

Unit Size 08

Water	Entering		2 GPM			3 GPM		4 GPM				
Coil	Water	H ₂ O P.D.	CF	M	H ₂ O P.D.	CF	М	H ₂ O P.D.	CFM			
Size	Temp	(in FT)	600			600	800	(in FT)	600	800		
	120°F	0.9	17,800	20,200	1.9	19,600	22,700	3.4	20,800	24,600		
3 ROW	140°F	0.9	25,200	28,500	1.9	27,700	32,000	3.4	29,300	34,700		
3 KOW	160°F	0.9	32,600	37,000	1.8	35,800	41,400	3.3	37,900	44,900		
	180°F	0.9	40,100	. , ,		44,000 50,900		3.3	46,500	55,100		

Water	Entering		2 G	РМ			3 G	РМ		4 GPM				
Coil	Water	H ₂ O P.D.		CFM		H ₂ O P.D.		CFM		H ₂ O P.D.		CFM		
Size	Temp	(in FT)	650	650 750 800			650	650 750 800			650	750	800	
	120°F	1.6	23,200	25,900	27,600	3.3	25,300	28,400	30,200	5.5	26,700	31,600	33,700	
4 ROW	140°F	1.5	32,300	29,200	31,100	3.2	37,200	37,300	39,700	5.4	39,300	38,100	40,600	
4 KOW	160°F	1.5	39,500	43,300	46,200	3.1	43,100	48,700	51,900	5.2	45,000	51,600	55,100	
	180°F	1.4	48,400	53,100	56,700	3.0	52,900	59,700	63,700	5.0	55,100	63,300	67,500	

Unit Size 12

Water	Entering		3 G	PM			4 G	РМ		5 GPM				
Coil	Water	H ₂ O P.D.		CFM		H ₂ O P.D.	CFM			H ₂ O P.D.	₂ O P.D. CFM			
Size	Temp	(in FT)	1000				1000 1100 1200			(in FT)	FT) 1000 1100			
	120°F	3.3	33,500	35,000	36,300	5.5	36,200	38,100	39,800	6.9	37,900	40,100	42,000	
4 ROW	140°F	3.2	47,200	49,400	51,300	5.4	51,000	53,700	56,100	6.8	53,500	56,500	59,200	
4 KOW	160°F	3.1	61,100	63,900	66,400	5.2	66,000	69,400	72,500	6.5	69,100	73,000	76,600	
	180°F	3.0	75,100	78,600	81,600	5.0	81,000	82,300	89,100	6.3	84,700	89,600	94,000	

Unit Size 16

01111 0120 10														
Water	Entering		3 G	PM			4 G	РМ		5 GPM				
Coil	Water	H ₂ O P.D.		CFM		H ₂ O P.D.		CFM	H₂O P.D			CFM		
Size	Temp	(in FT)	1400	1500	1600	(in FT)	1400	1500	1600	(in FT)	1400	1500	1600	
	120°F	1.0	38,600	39,600	40,500	1.7	42,700	44,000	45,200	2.6	45,500	47,000	48,400	
4 ROW	140°F	1.0	54,600	56,000	57,300	1.7	60,300	62,100	63,800	2.6	64,100	66,300	68,300	
41000	160°F	1.0	70,700	72,500	74,200	1.7	78,000	80,400	82,600	2.5	82,900	85,800	88,400	
	180°F	1.0	86,900	89,200	91,300	1.6	95,900	98,900	101,600	2.4	101,800	105,300	108,600	

Unit Size 20

Water	Entering		3 G	РМ			4 G	PM		5 GPM				
Coil	Water	H ₂ O P.D.		CFM		H ₂ O P.D.		CFM		H ₂ O P.D.		CFM		
Size	Temp	(in FT)	1800	1900	2000	(in FT)	1800	1900	2000	(in FT)	1800	1900	2000	
	120°F	1.1	43,700	44,400	45,100	1.9	49,100	50,100	51,100	2.9	52,900	54,100	55,300	
3 ROW	140°F	1.1	61,700	62,700	63,700	1.9	69,300	70,800	72,100	2.8	74,600	76,400	78,000	
3 KOW	160°F	1.1	79,900	81,200	82,500	1.8	89,700	91,600	93,300	2.8	96,500	78,800	100,900	
	180°F	1.1	98,200	99,900	101,400	1.8	110,300	112,600	114,700	2.7	118,600	121,400	124,000	

All capacities are based on 70°F entering air temperature.

For entering air temperatures other than 70°F use the following capacity correction factors:

(72°F x .982), (68°F x 1.02), (66°F x 1.04).

Glycol correction factors: (10% X .98), (20% X .95), (30% X .92), (40% X .88)

Sample Hydronic System Design

Includes: Heating coil selection, line sizing and selected pump other than supplied by ADP

Sample Application

3 ton Cooling Load 180° F Water Temp 40% Glycol Mixture 80,000 BTUH Heat Required

(1) From the Heating Capacity Tables select the Air Handler that supplies at least 80,000 BTUH at 1,200 CFM, 180° F water temperature.

The Unit Size 12 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Correct capacity for 40% glycol (correction factors found below capacity chart)

Corrected coil heating capacity (BTUH)

Sept. 12 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 12 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 12 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 13 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 14 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 15 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3' pressure drop

Very 0.88

Sept. 16 hot water coil supplies 94,000 BTUH @ 5 GPM, 6.3'

(2) Determine total equivalent line length

Note: Use the following line sizes as a guide for initial selection

1 - 3 GPM, 3/4" | 4 - 5 GPM, 1" | 6 - 8 GPM, 1 1/4"

Line size 1" Total number of fittings	Quantity		Equiv. ft. of pipe (Table 3)				
90° SR elbows	20	Х	2.7'	=	54'	_	54'
90° LR elbows	0	X	0	=	0	+	0
45° elbows	0	Х	0	=	0	+	0
gate valves	2	Χ	1.9'	=	3.8'	+	3.8'
Total supply and return line le	ngth					+	186'
Total equivalent line length						=	244'

(3) Determine total pump head required

Press. Drop/ft (Table 1)

(4) Now select a pump that supplies 5 GPM with at least 13.34' head capability.

Note: If desired, recalculation can be done with another line size to vary pump requirement.

Table 1		Piping Pressure Loss, ft/1 ft. (type K copper)																
Nominal									GI	PM								
Pipe Size	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.5	5	6	7	8
1/2"	.030	.048	.065	.083	.100	.125	.150	.175	.200	-	-	-	-	-	-	-	-	-
3/4"	.005	.009	.012	.016	.019	.024	.029	.034	.039	.045	.050	.056	.062	.077	.092	.130		-
1"	-	-			.005	.006	.007	.008	.009	.011	.012	.014	.015	.019	.023	.033	.042	.053
1 1/4"	-	-					-	-	-	-	-	-	.005	.007	.008	.011	.015	.018

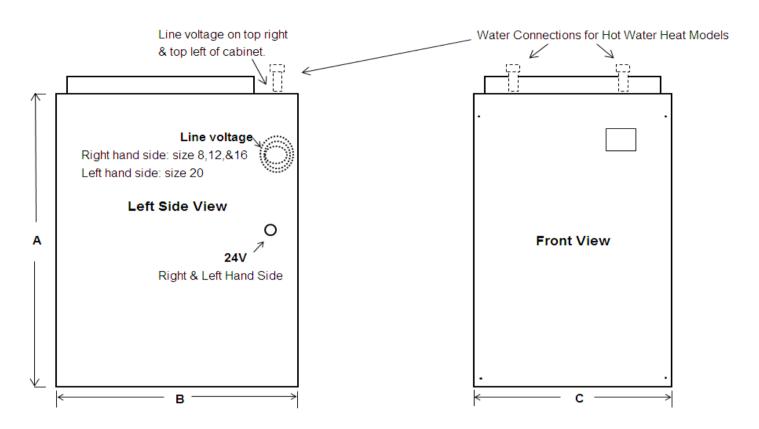
Table 2	Pressure Drop Correction								
% Glycol	140°F	160°F	180°F						
10	1.04	1.04	1.02						
20	1.08	1.07	1.04						
30	1.13	1.11	1.08						
40	1.19	1.16	1.12						
50	1.24	1.21	1.17						

Table 3	Equivalent ft. of pipe									
Pipe Size	90° SR el	90° LR el	45° el	gate valve						
1/2"	1.5	0.8	1	1						
3/4"	2	1	1.4	1.4						
1"	2.7	1.3	1.9	1.9						
1 1/4"	3.6	1.8	2.5	2.5						

Maximum Line Lengths for Heating Coils

Using factory installed circulator
All line lengths are total for supply and return

	Nominal						Maxi	imum	Sup	ply Pi	pe Le	ngth	(ft.) t	ype k	(сор	per					
Model Size	Pipe Size		GPM																		
	(ID)	1	1.3	1.5	1.8	2	2.3	2.5	2.8	3	3.3	3.5	3.8	4	4.3	4.5	4.8	5	6	7	8
8	1/2"	256	148	98	70	51	33	20	12	5	-	-	-	-	-	-	-	-	-	-	-
0	3/4"	•	-	•	454	351	251	186	140	105	-	•	-	-	•	•	•	-	-	-	-
	3/4"	-	-	-	-	-	-	-	-	126	97	75	57	43	30	19	11	4	-	-	-
12	1"	•	-	•	•	•	-	•	-	-	497	397	319	257	200	156	120	90	-	-	-
	1 1/4"	-	-	-	-	•	-	-	-	-	-	-	-	-	-	514	405	315	-	-	-
	3/4"	-	-	-	-	-	-	-	-	126	97	75	57	43	30	19	11	4	-	-	-
16	1"	-	-	-	•	•	-	-	-	•	497	397	319	257	200	156	120	90	•	•	-
	1 1/4"	-	-	-	-	•	-	-	-	-	-	-	-	-	-	514	405	315	-	-	-
20	3/4"	-	-	-	-	-	-	-	-	123	94	72	54	40	27	16	8	-	-	-	-
	1"	-		-	-	-	-	-	-	-	485	382	306	244	187	143	106	77	-	-	-
	1 1/4"	-	-	-	-	-	-	-	-	-	-	-	-	-	-	476	367	278	-	-	-


Notes:

- 1. Line lengths are based on water only. To adjust maximum line lengths for glycol, divide length by the factors shown in Table 2.
- 2. IMPORTANT: Glycol should never be used in a potable water system.
- 3. All lengths are based on closed loop systems.
- **4.** Line lengths within the shaded areas should not be used when a water heater is the source of heat. For these line lengths, excessive line temperature loss will occur and must be accounted for.
- 5. Supply and return lines must be properly insulated to reduce temperature loss and to prevent freezing when passing through an unconditioned space.
- 6. All lengths include (12) 90° short radius elbows. To adjust for extra or fewer fittings, use the factors in Table 1.
- 7. Always use full flow ball or gate valves to minimize pressure drop.

	Table 1	Equivalent ft. of pipe									
	Pipe size	90° SR el	90° LR el	45° el	gate valve						
	1/2"	1.5	0.8	1	1						
	3/4"	2	1	1.4	1.4						
I	1"	2.7	1.3	1.9	1.9						
I	1 1/4"	3.6	1.8	2.5	2.5						

Table 2	Fluid Temperature									
% Glycol	140° F	160° F	180° F							
10	1.04	1.04	1.02							
20	1.08	1.07	1.04							
30	1.13	1.11	1.08							
40	1.19	1.16	1.12							
50	1.24	1.21	1.17							

Dimensions

				Supply Du	ct Opening	Return Duct Opening			
Unit Size	A (in)	B (in)	C (in)	Depth (in)	Width (in)	Depth (in)	Width (in)		
8 & 12	27	20 1/2	17 1/2	16	15 1/2	19 1/4	16		
16	28	20 1/2	21	16	19	19 1/4	19 1/2		
20	28	20 1/2	24 1/2	16	22 1/2	19 1/4	23		

